СТАЛИ ЛЕГИРОВАННЫЕ И ВЫСОКОЛЕГИРОВАННЫЕ

Методы определения мышьяка

Издание официальное

E3 12-2000/412

Предисловие

1 РАЗРАБОТАН Межгосударственным техническим комитетом по стандартизации МТК 145 «Методы контроля металлопродукции»

ВНЕСЕН Госстандартом России

2 ПРИНЯТ Межгосударственным Советом по стандартизации, метрологии и сертификации (протокол № 21 от 30 мая 2002 г.)

За принятие проголосовали:

Наименование государства	Наименование национального органа по стандартизации		
Республика Армения	Армгосстандарт		
Республика Беларусь	Госстандарт Республики Беларусь		
Кыргызская Республика	Кыргызстандарт		
Республика Молдова	Молдовастандарт		
Российская Федерация	Госстандарт России		
Республика Таджикистан	Таджикстандарт		
Туркменистан	Главгосслужба «Туркменстандартлары»		
Республика Узбекистан	Узгосстандарт		
Украина	Госстандарт Украины		

- 3 Постановлением Государственного комитета Российской Федерации по стандартизации и метрологии от 11 сентября 2002 г. № 331-ст межгосударственный стандарт ГОСТ 12358—2002 введен в действие непосредственно в качестве государственного стандарта Российской Федерации с 1 мая 2003 г.
 - 4 B3AMEH ΓΟCT 12358-82

Содержание

1	Область применения	l
2	Нормативные ссылки	l
3	Общие требования	
4	Непламенный атомно-абсорбционный метод определения мышьяка	
5	Фотометрический метод определения мышьяка	
6	Потенциометрический метод определения мышьяка	
7	Обработка результатов	

СТАЛИ ЛЕГИРОВАННЫЕ И ВЫСОКОЛЕГИРОВАННЫЕ

Методы определения мышьяка

Alloyed and highalloyed steels. Methods for determination of arsenic

Дата введения 2003-05-01

1 Область применения

Настоящий стандарт устанавливает непламенный атомно-абсорбционный (при массовой доле мышьяка от 0,0002 % до 0,01 %), фотометрический (при массовой доле мышьяка от 0,002 % до 0,2 %) и потенциометрический (при массовой доле мышьяка от 0,05 % до 0,2 %) методы определения мышьяка в легированных и высоколегированных сталях.

2 Нормативные ссылки

В настоящем стандарте использованы ссылки на следующие стандарты:

- ГОСТ 859—2001 Медь. Марки
- ГОСТ 1973—77 Ангидрид мышьяковистый. Технические условия ГОСТ 3118—77 Кислота соляная. Технические условия
- ГОСТ 3760—79 Аммиак водный. Технические условия
- ГОСТ 3765—78 Аммоний молибденовокислый. Технические условия
- ГОСТ 4160—74 Калий бромистый. Технические условия
- ГОСТ 4204—77 Кислота серная. Технические условия
- ГОСТ 4328—77 Натрия гидроокись. Технические условия
- ГОСТ 4457—74 Калий бромноватокислый. Технические условия
- ГОСТ 4461—77 Кислота азотная. Технические условия
- ГОСТ 5456—79 Гидроксиламина гидрохлорид. Технические условия
- ГОСТ 5817—77 Кислота винная. Технические условия
- ГОСТ 5841—74 Гидразин сернокислый
- ГОСТ 5962—67* Спирт этиловый ректификованный. Технические условия
- ГОСТ 6552—80 Кислота ортофосфорная. Технические условия
- ГОСТ 9949—76 Ксилол каменноугольный. Технические условия
- ГОСТ 10157—79 Аргон газообразный и жидкий. Технические условия
- ГОСТ 11125—84 Кислота азотная особой чистоты. Технические условия
- ГОСТ 14204—69 Прибор для отделения мышьяка в сталях, чугунах и сплавах. Технические
 - ГОСТ 14261—77 Кислота соляная особой чистоты. Технические условия

 - ГОСТ 14262—78 Кислота серная особой чистоты. Технические условия ГОСТ 18300—87 Спирт этиловый ректификованный технический. Технические условия
 - ГОСТ 19522—74 Аммоний роданистый технический. Технические условия
 - ГОСТ 24147—80 Аммиак водный особой чистоты. Технические условия
- ГОСТ 28473—90 Чугун, сталь, ферросплавы, хром, марганец металлические. Общие требования к методам анализа

^{*} На территории Российской Федерации действует ГОСТ Р 51652—2000.

3 Общие требования

Общие требования к методам анализа — по ГОСТ 28473.

4 Непламенный атомно-абсорбционный метод определения мышьяка

4.1 Сушность метода

Метод основан на измерении значения поглощения резонансного излучения свободными атомами мышьяка при длине волны 193,7 нм, образующимися при введении анализируемого раствора в графитовую печь.

Мышьяк предварительно отделяют дистилляцией от основных компонентов стали в виде треххлористого мышьяка из солянокислого раствора в присутствии сернокислого гидразина и бромистого калия или осаждением тиоацетамидом в виде сульфида в 0,5 моль/дм³ сернокислом растворе в присутствии коллектора сульфида меди и винной кислоты в качестве комплексообразующего вещества.

4.2 Аппаратура, реактивы, растворы

Атомно-абсорбционный спектрофотометр со всеми принадлежностями, снабженный графитовым атомизатором.

Лампа для определения мышьяка.

Микропипетки вместимостью 20 и 50 мкдм³.

Аргон высокой чистоты по ГОСТ 10157 и смесь аргона с 5 % водорода.

Аппарат для отделения мышьяка по ГОСТ 14204 или любого другого типа.

Кислота соляная по ГОСТ 3118 или ГОСТ 14261 и разбавленная 1:1.

Кислота азотная по ГОСТ 4461 или ГОСТ 11125 и разбавленная 1:1.

Кислота серная по ГОСТ 4204 или ГОСТ 14262, разбавленная 1:1 и раствор 2,5 моль/дм³.

Кислота ортофосфорная по ГОСТ 6552 и разбавленная 1:1.

Смесь соляной и азотной кислот (3:1): к 150 см³ соляной кислоты добавляют 50 см³ азотной кислоты и перемешивают; готовят непосредственно перед применением.

Смесь соляной и азотной кислот, разбавленная (1:1): к 150 см³ соляной кислоты добавляют 50 см³ азотной кислоты, 200 см³ воды и перемешивают; готовят непосредственно перед применением.

Кислота винная по ГОСТ 5817, раствор 500 г/дм 3 .

Аммиак водный по ГОСТ 3760 или ГОСТ 24147.

Гидроксиламин гидрохлорид по ГОСТ 5456.

Аммоний роданистый по ГОСТ 19522, раствор 50 г/дм³.

Калий бромистый по ГОСТ 4160.

Натрия гидроксид по ГОСТ 4328, раствор 50 г/см³.

Гидразин сернокислый по ГОСТ 5841.

Ксилол по ГОСТ 9949.

Тиоацетамид, перекристаллизованный в ксилоле, раствор 20 г/дм³.

Перекристаллизация тиоацетамида: 30 г тиоацетамида растворяют в 100 см³ ксилола при 85—90 °C при перемешивании. Верхний слой раствора осторожно сливают в сухой стакан вместимостью 600—800 см³. В стакан с остатком прибавляют 100 см³ ксилола и снова растворяют при 85—90 °C. Верхний слой раствора тиоацетамида сливают в тот же стакан вместимостью 600—800 см³. Операцию проводят 4—5 раз. Остаток выбрасывают. Полученный раствор охлаждают в проточной воде. Выпавшие кристаллы тиоацетамида отфильтровывают на воронку Бюхнера с двумя фильтрами «белая лента». Кристаллы промывают 2—3 раза ксилолом, высушивают на воздухе.

Медь марки М00бк по ГОСТ 859.

Медь азотнокислая, раствор 0,01 г/см³: 1 г меди растворяют при нагревании в 15-20 см³ азотной кислоты (1:1). Раствор кипятят до удаления оксидов азота, охлаждают, разбавляют водой до 100 см³ и перемешивают.

Железо металлическое, ос.ч., карбонильное.

Универсальная индикаторная бумага, рН 1—10.

Ангидрид мышьяковистый марки «рафинированный» по ГОСТ 1973.

Натрий мышьяковистокислый орто (Na₃AsO₃ · H₂O).

Стандартные растворы мышьяка.

Раствор А: 0,132 г мышьяковистого ангидрида растворяют в 5 см³ раствора гидроксида натрия, разбавляют водой до 200 см³ и прибавляют серную кислоту (1:1) до нейтральной реакции по

универсальной индикаторной бумаге. Раствор переносят в мерную колбу вместимостью 1 дм³, доливают до метки водой и перемешивают.

Приготовление стандартного раствора из мышьяковистокислого натрия орто: 0,2801 г мышьяковистокислого натрия орто растворяют в 200 см³ воды, прибавляют серную кислоту (1:1) до нейтральной реакции по универсальной индикаторной бумаге. Раствор переносят в мерную колбу вместимостью 1 дм³, доливают до метки водой и перемешивают.

1 см³ стандартного раствора А содержит 0,0001 г мышьяка.

Раствор Б: 10 см³ стандартного раствора А помещают в мерную колбу вместимостью 100 см³, доливают до метки водой и перемешивают.

1 см³ стандартного раствора Б содержит 0,00001 г мышьяка.

Раствор В: 10 см³ стандартного раствора Б помещают в мерную колбу вместимостью 100 см³, доливают до метки водой и перемешивают; готовят непосредственно перед применением.

1 см³ стандартного раствора В содержит 0,000001 г мышьяка.

4.3 Проведение анализа

4.3.1 Приготовление испытуемого раствора

4.3.1.1 Отделение мышьяка дистилляцией в виде треххлористого мышьяка

Взвешивают навеску пробы в соответствии с таблицей 1. Результаты взвешивания в граммах записывают с точностью до четвертого десятичного знака. Навеску помещают в стакан (или колбу) вместимостью $250-300 \text{ см}^3$, приливают 30 см^3 смеси соляной и азотной кислот (3:1), 20 см^3 серной кислоты (1:1) и 10 см^3 ортофосфорной кислоты (1:1).

Таблица 1

Массовая доля мышьяка, %	Масса навески, г	Аликвотная часть раствора, мкдм ³
От 0,0002 до 0,001 включ. Св. 0,001 » 0,002 »	0,5 0,25	50 50
» 0,002 » 0,005 »	0,1	50
» 0,005 » 0,01 »	0,1	20

Стакан (или колбу) накрывают часовым стеклом и растворяют навеску при умеренном нагревании. Часовое стекло ополаскивают небольшим количеством воды и выпаривают раствор до начала выделения паров серной кислоты. После охлаждения осторожно добавляют $30~{\rm cm}^3$ соляной кислоты (1:1) и переносят раствор в колбу для отделения мышьяка. К раствору добавляют $0.5~{\rm r}$ бромистого калия, $0.5~{\rm r}$ сернокислого гидразина и медленно дистиллируют треххлористый мышьяк в аппарате для дистилляции при $110-120~{\rm cm}$ в колбонагревателе. Дистиллят собирают в стакан-приемник вместимостью $100~{\rm cm}^3$, содержащий $10~{\rm cm}^3$ воды. Дистилляцию продолжают до тех пор, пока в приемник не перейдет $2/_3$ первоначального объема. К дистилляту прибавляют $10~{\rm cm}^3$ азотной кислоты.

4.3.1.2 Отделение мышьяка осаждением в виде сульфида тиоацетамидом

Взвешивают навеску пробы в соответствии с таблицей 1. Результаты взвешивания в граммах записывают с точностью до четвертого десятичного знака. Навеску помещают в стакан (или колбу) вместимостью $250-300 \text{ см}^3$, приливают 30 см^3 смеси соляной и азотной кислот (3:1), накрывают стакан (или колбу) часовым стеклом и растворяют навеску при умеренном нагревании, охлаждают, снимают часовое стекло, ополоснув его небольшим количеством воды. Приливают 20 см³ серной кислоты (1:1) и выпаривают раствор до начала выделения паров серной кислоты, охлаждают. Соли растворяют в 40—50 см³ воды при нагревании, приливают 10 см³ раствора винной кислоты, раствор нагревают в течение 5-10 мин, охлаждают, добавляют аммиака до рН 8-9 по универсальному индикатору и нагревают раствор в течение 15—20 мин при 90—95 °C до полного растворения осадка вольфрамовой кислоты, охлаждают. К раствору приливают серной кислоты (1:1) до рН 2 по универсальной индикаторной бумаге и 10 см³ в избыток, доливают раствор до 180 см³ и нагревают до кипения. Осторожно добавляют 2—5 г гидроксиламина гидрохлорида и кипятят раствор до полного восстановления железа (по реакции с роданистым аммонием). Прибавляют 10 см³ раствора тиоацетамида, 1 см³ раствора азотнокислой меди, выдерживают раствор с выпавшим осадком сульфидов в течение 10—15 мин на теплом месте плиты, прибавляют еще 10 см³ раствора тиоацетамида, оставляют стоять при 85-90 °C 30-40 мин и охлаждают. Через 4-18 ч осадок сульфидов отфильтровывают на два фильтра «белая лента», промывают 6—7 раз холодной водой. Фильтрат отбрасывают. Осадок на фильтре растворяют в 30—40 см³ (порциями по 10 см³) горячей смеси соляной и азотной кислот, разбавленной (1:1), и промывают фильтр горячей водой 3—4 раза, собирая фильтрат и промывные воды в стакан (или колбу), в котором проводилось осаждение. Фильтр отбрасывают.

4.3.2 Спектрометрическое измерение

Испытуемый раствор, приготовленный по 4.3.1.1 или 4.3.1.2, выпаривают досуха. Соли растворяют при нагревании в 5 см³ азотной кислоты (1:1), накрывая стакан (или колбу) часовым стеклом и охлаждают. Раствор переносят в мерную колбу вместимостью 25 см³, доливают водой до метки и перемешивают. Отбирают микропипеткой аликвотную часть раствора, равную 20—50 мкдм³ (таблица 1), вводят в графитовую печь и фиксируют значение поглощения резонансного излучения свободными атомами мышьяка при длине волны 193,7 нм. Для измерения отбирают не менее трех аликвотных частей раствора. Печь прожигают при максимальной температуре в течение 5 с.

Массу мышьяка находят по градуировочному графику с учетом поправки контрольного опыта. 4.3.3 Подготовка прибора к измерению

Включение прибора, настройку спектрофотометра на резонансное излучение, регулировку блока управления, блока автоматизации проводят согласно инструкции, прилагаемой к прибору.

Условия определения мышьяка:

аналитическая линия (λ) — 193,7 нм;

спектральная ширина щели — 0,7 нм;

время высушивания при 145 °C — 15 с;

время разложения при 900 °C — 12 с;

время атомизации при 2250 °C — 5 с;

режим инертного газа — минимальный с отключением на стадии автомизации.

4.3.4 Построение градуировочного графика

В стаканы (или колбы) вместимостью 250—300 см³ помещают навески карбонильного железа в количестве, соответствующем массе навески пробы (таблица 1), и отмеренные количества стандартного раствора В мышьяка (таблица 2).

Таблица 2

Массовая доля мышьяка, %	Объем стандартного раствора В мышьяка, см ³		
От 0,0002 до 0,005 включ.	0,00; 1,00; 2,00; 3,00; 4,00; 5,00		
Св. 0,005 » 0,01 »	0,00; 2,00; 4,00; 6,00; 8,00; 10,00		

Во все стаканы приливают кислоты, как при растворении пробы, и далее поступают, как указано в 4.3.1—4.3.3.

Из значения оптической плотности анализируемых растворов вычитают значение оптической плотности раствора контрольного опыта. По найденным значениям оптической плотности и соответствующим им массам мышьяка строят градуировочный график.

5 Фотометрический метод определения мышьяка

5.1 Сущность метода

Метод основан на образовании синего мышьяково-молибденового комплекса в результате взаимодействия пятивалентного мышьяка с молибденовокислым аммонием в присутствии восстановителя— сернокислого гидразина или аскорбиновой кислоты.

Мышьяк предварительно отделяют от основных компонентов стали дистилляцией в виде треххлористого мышьяка из солянокислого раствора в присутствии сернокислого гидразина и бромистого калия или осаждением тиоацетамидом в виде сульфида в 0,5 моль/дм³ сернокислом растворе в присутствии коллектора сульфида меди и винной кислоты в качестве комплексообразующего вещества.

5.2 Аппаратура, реактивы, растворы

Спектрофотометр или фотоэлектроколориметр со всеми принадлежностями.

Кислота хлорная, х.ч., плотностью 1,51 г/см³, или ч.д.а., плотностью 1,22 г/см³.

Спирт этиловый по ГОСТ 5962 или ГОСТ 18300.

Аммоний молибденовокислый по ГОСТ 3765, перекристаллизованный из спиртового раствора.

Перекристаллизация молибденовокислого аммония: 250 г молибденовокислого аммония растворяют в 400 см³ воды при 70—80 °C. Горячий раствор фильтруют через фильтр «синяя лента» в стакан, содержащий 300 см³ этилового спирта. Раствор охлаждают и выдерживают в проточной воде

в течение 1 ч. Выпавшие кристаллы отфильтровывают на воронку Бюхнера с фильтром «белая лента». Кристаллы промывают 2-3 раза этиловым спиртом порциями по 20-30 см 3 и высушивают на воздухе.

Аммоний молибденовокислый, раствор 10 г/дм^3 в серной кислоте 2,5 моль/дм 3 .

Гидразин сернокислый, раствор 1,5 г/дм³.

Молибдато-гидразиновая реакционная смесь: в мерную колбу вместимостью $1~\rm gm^3$ приливают $100~\rm cm^3$ раствора молибденовокислого аммония, разбавляют водой до объема $900~\rm cm^3$, добавляют $10~\rm cm^3$ раствора сернокислого гидразина, доливают водой до метки и перемешивают; реакционную смесь готовят в день применения.

Хлорномолибдатный реактив: 5 г молибденовокислого аммония растворяют в 100 см^3 воды при нагревании, охлаждают. Затем в мерную колбу вместимостью 1 дм^3 приливают 500 см^3 воды, 280 см^3 хлорной кислоты ч.д.а. или 230 см^3 хлорной кислоты х.ч. и постепенно при перемешивании вводят раствор молибденовокислого аммония. Раствор доливают водой до метки и перемешивают; готовят в день применения.

Кислота аскорбиновая, раствор 5 г/дм³; готовят в день применения.

Остальные реактивы, аппаратура и растворы — по 4.2.

5.3 Проведение анализа

5.3.1 Приготовление испытуемого раствора

Взвешивают навеску пробы в соответствии с таблицей 3. Результаты взвешивания в граммах записывают с точностью до четвертого десятичного знака. Навеску помещают в стакан (или колбу) вместимостью $250-300~{\rm cm}^3$.

Таблина 3

Массовая доля мышьяка, %	Масса навески, г	Разбавление, см ³	Объем аликвотной части раствора, см ³	
От 0,002 до 0,005 включ. Св. 0,005 » 0,01 »	1 0,5	_ _		
* 0,01 * 0,02 * * 0,02 * 0,05 * * 0,05 * 0,10 * * 0,10 * 0,20 *	0,2 0,2 0,2 0,2	50 50 50 50	25 10 5	

Далее поступают, как указано в 4.3.1, 4.3.1.1, 4.3.1.2, отделяя мышьяк от основных компонентов стали в виде сульфида тиоацетамидом или дистилляцией.

Испытуемый раствор, приготовленный по 4.3.1.1 или 4.3.1.2, выпаривают до объема 30-40 см³. При массовой доле мышьяка от 0.02% до 0.2% раствор переносят в мерную колбу вместимостью 50 см³, доливают до метки водой и перемешивают. Аликвотную часть раствора 25-5 см³ (таблица 3) помещают в стакан вместимостью 100 см³.

К раствору добавляют 2 см³ хлорной кислоты и выпаривают до появления паров хлорной кислоты.

Предупреждение: нельзя допускать контакта паров хлорной кислоты с органическими материалами, аммиаком и парами азотистой кислоты.

Стенки стакана ополаскивают водой и повторяют выпаривание до паров хлорной кислоты.

5.3.2 Спектрофотометрическое измерение

5.3.2.1 Определение мышьяка с молибдато-гидразиновой реакционной смесью

К остатку, полученному по 5.3.1, приливают 20 см³ молибдато-гидразиновой реакционной смеси, стакан накрывают часовым стеклом и нагревают на кипящей водяной бане 10 мин. Раствор охлаждают, переносят в мерную колбу вместимостью 50 см³. Стенки стакана и часовое стекло ополаскивают молибдато-гидразиновой реакционной смесью, содержимое мерной колбы доливают до метки этой же реакционной смесью и перемешивают.

Через 30 мин измеряют оптическую плотность окрашенного раствора на спектрофотометре при длине волны 840 нм или на фотоэлектроколориметре в области светопоглощения от 750 до 900 нм. Толщину поглощающего свет слоя выбирают таким образом, чтобы получить оптимальное значение оптической плотности.

В качестве раствора сравнения используют воду.

Массу мышьяка находят по градуировочному графику с учетом поправки контрольного опыта.

5.3.2.2 Определение мышьяка с хлорномолибдатным реактивом

К остатку, полученному по 5.3.1, приливают 20 см^3 хлорномолибдатного реактива, 1 см^3 раствора сернокислого гидразина или 1 см^3 раствора аскорбиновой кислоты, перемешивают и нагревают раствор на кипящей водяной бане в течение 10-15 мин. Раствор охлаждают, переносят в мерную колбу вместимостью 50 см^3 , доливают до метки хлорномолибдатным реактивом и перемешивают.

Оптическую плотность окрашенного раствора измеряют на спектрофотометре при длине волны 840 нм или на фотоэлектроколориметре в области светопропускания от 750 до 900 нм.

Толщину поглощающего свет слоя кюветы выбирают таким образом, чтобы получить оптимальное значение оптической плотности.

В качестве раствора сравнения используют воду.

Массу мышьяка находят по градуировочному графику с учетом поправки контрольного опыта.

5.3.3 Построение градуировочного графика

В стаканы (или колбы) вместимостью 250—300 см³ помещают навески карбонильного железа в количестве, соответствующем массе навески пробы (таблица 3) и отмеренные количества стандартного раствора мышьяка А или Б (таблица 4).

Таблица 4

Массовая доля мышьяка, %	Наименование стандартного раствора мышьяка	Объем стандартного раствора, см ³
От 0,002 до 0,02 включ. Св. 0.02 » 0.05 »	Раствор Б То же	0,00; 1,00; 2,00; 3,00; 4,00; 5,00 0,00; 2,00; 4,00; 6,00; 8,00; 10,00
» 0,05 » 0,10 »	Раствор А	0,00; 0,50; 1,00; 1,50; 2,00; 2,50
» 0,10 » 0,20 »	То же	0,00; 1,00; 2,00; 3,00; 4,00; 5,00

Во все стаканы приливают кислоты, как при растворении пробы, и далее поступают, как указано в 5.3.1 и 5.3.2.

Из значения оптической плотности анализируемых растворов вычитают значение оптической плотности раствора контрольного опыта. По найденным значениям оптической плотности и соответствующим им массам мышьяка строят градуировочный график.

6 Потенциометрический метод определения мышьяка

6.1 Сущность метода

Метод основан на потенциометрическом титровании мышьяка (III) раствором бромноватокислого калия до получения скачка потенциала. Мышьяк предварительно отделяют от основных компонентов стали дистилляцией в виде треххлористого мышьяка из солянокислого раствора в присутствии бромистого калия и сернокислого гидразина.

6.2 Аппаратура, реактивы и растворы

Установка для потенциометрического титрования:

пара электродов — индикаторный платиновый и электрод сравнения каломельный или вольфрамовый;

магнитная или механическая мешалка;

милливольтметр постоянного тока или рН-метр, позволяющие четко фиксировать скачок потенциала в конечной точке. При необходимости к прибору последовательно подключают переменное сопротивление, позволяющее проводить измерение в пределах шкалы прибора.

Калий бромноватокислый по ГОСТ 4457, раствор концентрации 0,01 моль/дм 3 : 0,2783 г предварительно перекристаллизованного из водного раствора и высушенного при 150-180 °C бромноватокислого калия растворяют в 100-120 см 3 воды, переливают в мерную колбу вместимостью 1 дм 3 , доливают до метки водой и перемешивают. Допускается приготовление раствора из фиксанала. Массовая концентрация раствора бромноватокислого калия C (г/см 3 мышьяка) составляет 0,0003746.

Остальные реактивы, аппаратура и растворы — по 4.2.

6.3 Проведение анализа

6.3.1 Приготовление испытуемого раствора

Взвешивают навеску пробы массой 2 г и результаты взвешивания в граммах записывают с точностью до четвертого знака.

Навеску помещают в стакан (или колбу) вместимостью 600 см^3 , приливают 60 см^3 смеси соляной и азотной кислот (3:1) и $25-30 \text{ см}^3$ серной кислоты. Если сталь содержит вольфрам, добавляют 30 см^3 ортофосфорной кислоты (1:1). Стакан (или колбу) накрывают часовым стеклом и проводят растворение вначале при комнатной температуре, а затем умеренно нагревают до полного растворения навески.

Часовое стекло ополаскивают небольшим количеством воды и выпаривают раствор до начала выделения паров серной кислоты. Содержимое стакана (или колбы) охлаждают, осторожно добавляют $100~{\rm cm}^3$ соляной кислоты (1:1) и количественно переносят раствор в колбу аппарата для отделения мышьяка вместимостью $250~{\rm cm}^3$. К раствору добавляют $1~{\rm r}$ бромистого калия, $3~{\rm r}$ сернокислого гидразина и медленно дистиллируют треххлористый мышьяк, нагревая раствор при $110-120~{\rm cm}^3$. С Дистиллят собирают в стакан-приемник вместимостью $400~{\rm cm}^3$, содержащий $40~{\rm cm}^3$ воды. Дистилляцию продолжают до тех пор, пока в приемник не перейдет 2/3 первоначального объема раствора.

6.3.2 Титриметрическая процедура

Стакан с дистиллятом помещают в прибор для потенциометрического титрования, опускают мешалку и электроды и, включив мешалку, перемешивают раствор в течение 0,5—1 мин. Затем, не выключая мешалку, раствор титруют, добавляя по каплям раствор бромноватокислого калия из микробюретки до получения скачка потенциала.

7 Обработка результатов

7.1 Массовую долю мышьяка X, %, вычисляют по формулам: при определении мышьяка непламенным атомно-абсорбционным и фотометрическим методами

$$X = \frac{m100}{m_1} \,, \tag{1}$$

где m — масса мышьяка, найденная по градуировочному графику, г;

 m_1 — масса навески стали, г;

при определении мышьяка потенциометрическим методом

$$X = \frac{(V - V_1)C100}{m} \,, \tag{2}$$

- где V— объем раствора бромноватокислого калия, израсходованного на титрование анализируемого раствора, см 3 ;
 - V_1 объем раствора бромноватокислого калия, израсходованного на титрование раствора контрольного опыта, см³;
 - C массовая концентрация раствора бромноватокислого калия с молярной концентрацией эквивалента 0.01 моль/дм³, г/см³ мышьяка;
 - m масса навески стали, г.
- 7.2 Нормативы оперативного контроля сходимости, воспроизводимости и точности определения массовой доли мышьяка приведены в таблице 5.

Таблица 5

Массовая доля мышьяка	Предельная погрешность результатов анализа Δ	Норматив оперативного контроля сходимости d_2	Норматив оперативного контроля сходимости d_3	Норматив оперативного контроля воспроизводимости $d_{\rm k}$	Норматив оперативного контроля точности δ
От 0,0002 до 0,0005 включ. Св. 0,0005 » 0,001 » » 0,001 » 0,002 » » 0,002 » 0,005 » » 0,005 » 0,01 » » 0,01 » 0,02 » » 0,02 » 0,05 » » 0,05 » 0,1 » » 0,1 » 0,2 »	0,00016	0,00017	0,00020	0,00020	0,00010
	0,0004	0,0004	0,0005	0,0005	0,0003
	0,0008	0,0008	0,0010	0,0010	0,0005
	0,0012	0,0012	0,0015	0,0015	0,008
	0,0024	0,0025	0,0030	0,0030	0,0016
	0,004	0,004	0,005	0,005	0,003
	0,006	0,006	0,007	0,007	0,004
	0,010	0,010	0,012	0,012	0,006
	0,016	0,017	0,020	0,020	0,010

ГОСТ 12358-2002

Нормативы оперативного контроля сходимости и нормативы контроля воспроизводимости рассчитаны при доверительной вероятности P = 0.95. Нормативы оперативного контроля точности рассчитаны при уровне доверительной вероятности P = 0.85.

Алгоритмы оперативного контроля погрешности измерений и периодичность его проведения — по ГОСТ 28473.

УДК 669.15—194:543.06:006.354

MKC 77.080.20

B39

ОКСТУ 0709

Ключевые слова: стали легированные, высоколегированные, мышьяк, методы определения

Редактор Л.И. Нахимова
Технический редактор Л.А. Гусева
Корректор В.И. Варенцова
Компьютерная верстка Л.А. Круговой

Изд. лиц. № 02354 от 14.07.2000.

Сдано в набор 02.10.2002. Подписано в печать 21.10.2002. Уч.-изд. л. 1,10. Тираж 415 экз. С 7802. Зак. 911. Усл. печ. л. 1,40.

ИПК Издательство стандартов, 107076 Москва, Колодезный пер., 14. http://www.standards.ru e-mail: info@standards.ru Набрано в Издательстве на ПЭВМ

Филиал ИПК Издательство стандартов — тип. «Московский печатник», 103062 Москва, Лялин пер., 6. Плр № 080102